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A mechanical system consists of an unchangeable rigid body (a carder) and a subsystem whose configuration and composition 
may vary with time (the motion of its elements relative to the carder is given). The free motion of the system in a uniform 
gravitational field is investigated, on the assumption that there is no dynamic symmetry. Necessary and sufficient conditions are 
derived for the existence of two integrals, each quadratic in the components of the absolute angular velocity of the carder. It is 
shown that the initial dynamical system can be reduced to an autonomous gyrostat system if and only if the motion has these 
two quadratic integrals; the explicit form of a linear transformation to the autonomous system is indicated. The explicit form of 
the integrals and conditions for their existence are obtained. Examples of motion with two quadratic integrals are considered. 
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1. A mechanical system K consists of an unchangeable rigid body K1 (the carrier) and a subsystem K2 
whose elements move in a given manner relative to the carrier. The subsystem K2 may contain a 
configurationally variable component and a component of variable composition. 

The equations of rotational motion of the carrier of a system of variable composition are well known 
[1]. In this paper we will derive another form for these equations, which we proposed in [2]. 

Let E1 be an inertial frame of reference (FR) let, E2 be an FR rigidly attached to the carrier, and 
let E3 be the principal FR, associated with the principal central axes of inertia of the system K. 
We introduce the following notation: m n is the mass of a point mass Mn, C is the centre of mass of K, 
r = CMn; ( )i denotes the derivative with respect to time in the FR Ei and ()" = ( )~; further 

Gi=~ mnrax(r.)~, Mf=-Y. mnrnx(rn)~" (1.1) 
The summation in this formula is performed over all the elements of K; G i and M(-are the angular 
momentum and principal moment of inertia (about C) in the motion of the elements of K relative to 
a FR which is in translational motion, together with C, relative to Ei. 

Let J denote the inertia operator of the system K at its centre of mass C. Define a symmetric linear 
operator A by 

Ax z J ' x -  Em,  Ir~ x(x x rn)+ rn x ( x x  r~)] (1.2) 

The right-hand side of this identity remains unchanged if the differentiation in E 2 is replaced throughout 
by differentiation in any of the FRs Ei. 

If x~ is the angular velocity of Ei relative to Ej, then 

Jxij = Gj - G  i (1.3) 

(1.4) 

Suppose the system K is subject to certain external forces with principal moment of inertia M c about 
C; let Mr denote the principal moment of inertia (about C) of the reactive forces; there may also be a 
control moment M* given in E2. Let M = M e + Mr  + M*. Since the passage from the inertial FR E1 
to FR E'I moving forward together with C relative to E1 does not produce Coriolis forces of inertia, 
while the principal moment (about C) of the translational forces of inertia is zero, it follows that the 
sum of the moments M and the principal moment M~ of inertia in motion relative to El is zero. Hence, 
using property (1.4) of the operator A for i = 2,j = 1, we obtain (G1)~ --- Ax21 + M + M~+ G2. Changing 
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here to differentiation in E 2 and taking into account that G1 = G 2 + Jx21 , we obtain the equation 

= y x x + A x + L ,  y = J x + G  2 (1.5) 

(L=M+M2f+t~2 ,  M = M e + M r + M  ") 

Here and henceforth x = x21 is the absolute angular velocity of the carrier. 
An equation of type (1.5), supplemented by Poisson's equation, also describes the motion of the carrier 

about a fixed point [3]. 
In the case considered below--free motion in a uniform field--we have M c = 0, and Eq. (1.5) for 

the rotation of the carrier may be separated from the system which describes the motion of the carrier 
as a whole. We shall assume that the configuration and composition of system Kvary according to given 
laws, in which case the operators J~t), A(t) and the vector-valued functions G2(t) and L(t) are given in 
E2; we shall assume that J, G2 ~ C'[O, + oo), A, L ~ C[0, + oo). 

There are several publicationst which investigate systems of variable configuration, the reactive forces 
on which are due to detachment of a working medium whose particles have given absolute velocities. 
The equations describing the rotation of the carrier for this model are obtained from (1.5) by putting 
A - 0. For a configurationally variable system of constant composition we also have A - 0. 

2. Throughout, we shall assume that the system lacks dynamic symmetry. The conditions for a quadratic 
integral (QI) to exist for system (1.6) in full form 

(y, By) + (m, y) + ~t) = const (2. I) 

obtained previously in [2], are given by Theorem I. 
Notation: A i and ei are the eigenvalues and eigenvectors, respectively, of the inertia operator J, 

I ei I = I, Z.ii = (ei, Aej),x (k) = (x, ek), AAi = (A.i -Ak)Si:k, ai =AiAAi, f,. = aifhi, where 

13tl = exp -2  ATl(~)Zii(~)d~ , i = 1, 2, 3 (2.2) 

Theorem 1. Assuming that the operator B is non-singular and the eigenvalues of the operator J are 
different, an integral (2.1) of system (1.5) exists if and only if 

(Gs).~ + Axs2 = L (2.3) 

and the functionsj~ are linearly dependent. The integral may be reduced to the form 

(Jxsl, BICsYxsl) = const (2.4) 

The eigenvectors of the operators B1 and Cs are el, e2, e3 and ~li are  the eigenvalues of Bt. The 
eigenvalues Csi of Cs may be any sequence of constants in the linear dependence conditions for the 
functions/~ 

cslft + cs2f2 + cs3f3 - O, csi =- const (2.5) 

The angular velocity Xs3 of the basis Es about E3, which appears in condition (2.3), is given by the 
condition 

a a .tk) = 50 k (Ai~li _ A j ~ j  )G(3 k) - (Ai~ i + A j ~ j ) ~ , i j  (2.6) k~k'~s3 

where (i ,j ,  k )  is any permutation of (1, 2, 3), ~i = ~hCsi • The  necessary condition (2.3) may be written 
as follows [2]: 

M + M ~  = 0  (2.7) 

where M = Mr + M*, and, noting that M + Mfl = 0, we obtain Mrs -- M~. 

tMAKEYEV, N. N., Integral manifolds of the equations of dynamics for compound mechanical systems. Doctorate dissertation: 
01.02.01. St Petersburg, 1992. 
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Definition 1. A motion of the FR Es with pole at the centre of mass C of K is said to be quasi- 
translational if the principal moment of inertia (about C) in motion relative to E~ is equal to the principal 
moment of inertia (about C) relative to the FR El, that is, M~ = M(. The frame of reference Es and its 
basis will be called a QT-frame and a QT-basis, respectively. 

Here E[, as before, is a frame of reference in translational motion, together with C, with respect to 
the inertial FR El. It is obvious that El is a QT-frame of reference. 

The necessary condition (2.3) for the existence of the integral means that the basis E~ is a QT-basis. 
Condition (2.5) that the functions~ be linearly dependent may be written as nf < 3, where nf is the 

number of dimensions of the linear span of the set (fl, f2, f3}. 
By (2.6), any sequence of constants Csl, cs2, cs3 uniquely defines Xs3. The following definition, which 

assumes that nf < 3, is introduced for brevity. 

Definition 2. A basis Es whose angular velocity Xs3 about the principal basis is given by (2.6), 
where the constant eigenvalues csi of Cs satisfy condition (2.5), will be called an admissible basis corres- 
ponding to the operator Cs. A FR with pole at C and an admissible basis will be called an admissible 
FR. 

Theorem 1 may now be rephrased as follows. 

Theorem 1'. Assuming that the operator B is non-singular and the eigenvalues of the operator J are 
different, a QI (2.1) of system (1.5) exists if and only if nf < 3 and an admissible FR corresponding to 
some operator Cs is a QT-frame. The integral may be written in the form (2.4). 

Ifnf = 2, condition (2.5) defines the sequence of constants csi uniquely (apart from a common multiple) 
and the system may have only one QI (2.1), which is written as (2.4). A necessary condition for the 
existence of two independent QIs is nf = 1, i.e. 

f i  = ~l iai  = a i o f ( t ) ,  f ( 0 )  = 1; i = I, 2,  3 (aio = ai(O))  (2.8) 

The conditions for the existence of two independent QIs, that follow from Theorem 1', may be 
formulated as follows. 

Proposition 1. If system (1.5) lacks dynamic symmetry, it has two independent QIs in full form if and 
only if the functions f,.(t) are proportional to one another and two admissible QT-bases exist corres- 
ponding to different operators Cn and Cm. The integrals are then 

(Jxnl, B t CnJxnl) = const, (J x,n I, B ICmJxml ) = const (2.9) 

Later we shall present a simpler system of conditions for the existence of two QIs. 

3. We will now describe the set of admissible bases in the case when two independent QIs exist. 
Assume, indeed, that two independent QIs exist. Then they may be written in the form (2.9). The 

constant eigenvalues of the operators Cn and Cm must satisfy condition (2.5), which, in view of (2.8), 
implies that the triples {Cni}, {Cmi} are linearly independent solutions of the equation 

a lou l  + a20u 2 + a30u 3 = 0 

Now, ui = 1 and u i = A,.-d (i -- 1, 2, 3) are also independent solutions of this equation. Since any linear 
combination of integrals (2.9) is again a QI, this implies the following. 

Proposition 2. If system (1.5) lacks dynamic symmetry and has two independent QIs in full form, then 
any QI of the system is a linear combination of the integrals 

(Jx41, BiJx41)=const, (Jxsi, BiJoIJX51)=const (3.1) 

where E4 is an admissible basis corresponding to the identity operator E and E5 is an admissible basis 
corresponding to J0 -1, J0 = J(0). 

Proposition 3. If two QIs exist, then the angular velocity about E5 of an arbitrary admissible basis Es 
is 

Xs5 = (Jo +VsE)-IJox4s, vs = const (3.2) 
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Proof. By Proposition 2, any QI may be written as a linear combination of integrals (3.1). On the 
other hand, by Theorem 1, any QI has the form (2.4). Hence 

O~sl (Jx4l, Bt Jx41 ) + ~s2 (Jxsl, B~ Jff lJxsl  ) = (JXsl, BiCsJXsl )+ const 

where xkl = xk2 + x, x = x21. Comparison of terms quadratic and linear in x yields the conditions 

C s = (X$1E ,~ (gs2Jo I , •slX42 + ots2Jo I x52 = (Otsl E + as2Jo I )xs2 

It follows from this condition that (as lE  + %2J0-1)xs5 = aslx45, and, putting vs = as2a-lsl ,  we obtain 
a representation of the whole set of admissible angular velocities in the form (3.2), where vs is an arbitrary 
constant parameter. For an admissible basis E5 we have Xs5 = 0, and in this case we can retain 
representation (3.2) by setting v5 = oo. 

It follows from formula (2.6), in view of (2.8), that 

X(k) = a~[ (  Aiohi _ Ayoh j )G~k)Sijk _ ( Aiohi + Ajoh j )~'ij ] 43 

x(k) -; (4) 53 = Akoako[(hi - hj )G 3 8/j k - (h i + hj )~'ij ] (3.3) 

Xtk ) = hihja~g[ ( AAi _ AAj  )~ijk~,ij - AAkG~ k) ] 54 

where aio  = hi(O),  h i = ~ i 0 ( / ~ i )  -1. 
The case x45 = 0 (the bases E and E5 are identical) was dealt with in [2]. 
We will now present another description of the set of admissible angular velocities, equivalent to 

(3.2). 
Let us denote an operator with eigenvalues and eigenvectors Lii, ei(i = 1, 2, 3) by A1 [2], and put 

A 2 = A - A 1. It follows from (2.2) that 

(B I ); = -2BjJ-tA1 (3.4) 

Condition (2.6) is satisfied if and only if the operator Fl is skew symmetric [2] 

F I = BICsFJ -1, F =  A 2 + M(G 3 - Jxs3 )+  M(x.v3)J (3.5) 

Throughout, M(b) is the operator of vector multiplication by b: M(b)x ~ b x x. 
We make the change of variables Xs3 = w + a, choosing a so that the operator A2 + M(G3 - J a )  + 

M(a) / i s  skew symmetric with associated vector c 

A 2 + M(G 3 - Ja )+  M(a)J = M(c) (3.6) 

This equality determines the vectors a and c. Since A2 is a symmetric operator, it follows from (3.6) 
that 

A 2 = ( J M ( a ) -  M(a)J)  / 2, M(c) = M(G~ - Ja) + (JM(a)  + M(a)J )  / 2 (3.7) 

atk) = -2~/j (AA k)-;, c <k) = G~ k) + (AAj - AA i)(AA~)-I k08ijk 

The operator F takes the form F = M(c) + M(w)J - M(Jw). 
write the condition F1 = -F1 in the form Putting D = B1Cs, we T 

D M ( e  - J w ) J  -I - J-J M(¢  - J w ) D  = M(w)D-  DM(w) 

Multiplying by ei and ej, we obtain the equivalent system of conditions 

(e - Jw) tk ) (d jA f  -I - d iA / l  ) = wtk)(di - d j )  

where di are the eigenvalues of D and ( i , j ,  k )  is a permutation of (1, 2, 3). 
Since Cs = otslE + asEJ(  1, it follows in view of (2.8) that 

(3.8) 

(3.9) 

d i = aioa[ I (Ctsl + Ots2A~ I ) f  
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The system of conditions (3.9) becomes 

where 

Jw + ~,sw = c (3.10) 

~'s (t)  = A I A2A 3 (~. A i(AiO + v s )AAi0 )-I ~, A/--I (Aio + Vs )AAi 0 (3.11) 

whence 

(Jxs3)  × Xs3 = ( J a  + ¢) × xs3 + (Jxs3) × a - ( J a  + c) × a 

Taking (3.6) into consideration, we obtain (3.13). 

4. We will note some properties of admissible QT-bases. 

Proposition 7. For any admissible QT-basis E~ of a system with two QIs, the following equation holds 

B?~(B~Jxs3)] = b, b = p -  M ( - M (4.1) 

Proof. Let Es be some admissible QT-basis. Then condition (2.7) is satisfied and consequently so is 
condition (2.3); changing to differentiation in E3, we can write the latter in the form 

(G 3 - JXs3) 3 + G~ x xs3 + Ax~ 2 = L 

Here and below, the summation over i is from i = 1 to i = 3; Vs = C~slCts~. 
We have thus proved the following proposition. 

Proposition 4. If two QIs exist, then the angular velocity about E 3 of an arbitrary admissible FR Es 
may be written as 

Xs3 ---- a + (J + ksE)-I e (3.12) 

Proposition 5. The descriptions (3.2) and (3.12) of the set of admissible angular velocities are 
equivalent. 

Proof. It follows from (3.12) that 

X45 ---- (X43 - a)  - (X53 - a)  = ( J  + ~,4E)-I[c - ( J  + ~.4E)(x53 - a)]  

and formula (3.12) may be written in the form 

Xs5 = ( J  + ~'.vE) -I [(~'4 - ~s)(x53 - a )  + ( J  + ~.4E)x45 ] 

which is identical with (3.2) if 

[(~'s - ~'4)Jo + v s ( J  + ~'4E)]x45 = (~'4 - ~s )(Jo + vsE)(x53 - a)  

It can now be verified directly that this equality is an identity in Vs, using the explicit expressions (3.3), 
(3.8) and (3.11) for x53, x54, a, ~. 

Proposition 6. The set of admissible bases of a system with two QIs has the invariant Gs x xs3 + A2Xs3, 
that is, the following equality holds 

Gs × xs3 + A2xs3 = p, p = ( J a + c ) ×  a (3.13) 

where p is independent of the choice of the admissible basis Es. 

Proof. Condition (3.10), defining the set of admissible bases, implies that 

0 = (Jw - c) x w = (Jxs3 - Ja - c) x (Xs3 - a) 
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Hence, assuming that Es is an admissible basis and taking property (3.13) into account, we obtain 

(Jxs3)~ - Alx.¢3 = p+ Ax32 +(G3) ~ - L (4.2) 

It follows from formula (3.4) that (Jx)3 - Alx = B?VZ(B:/Ejx)'3. Using property (1.4) of the operator A, 
we conclude that the right-hand side of (4.2) is equal to b, and this proves (4.1). 

Proposition 8. For a system with two QIs, the angular velocity x, nn of rotation of two arbitrary admissible 
QT-bases about one another satisfies the condition 

: o  

Proof. This follows from Proposit ion 7. 

(4.3) 

Proposition 9. If a system has two QIs, then condition (4.3) holds for all admissible bases if and 
only if it holds for two different admissible bases. In particular, an equivalent form of condition (4.3) 
is 

BfiJx4s = Go, (Go) ~ = 0 

Proof. It follows from (3.2) that 

x , .  = (Jo + v , ,E)  -I (Jo + vnE)-'  (v .  - v , , ) /ox4s  

and it is clear that (4.3) and (4.4) are equivalent. 

(4.4) 

5. We will now show that the necessary conditions developed above are also sufficient for the existence 
of two Ols. 

Theorem 2. If system (1.5) describing the rotation of the carrier of a variable system in free motion 
lacks dynamic symmetry, it has two QIs in full form if and only if it satisfies conditions (2.8), (4.4) and 
the condition 

fBi  j,,,3); _- b 

where E4 and E5 are admissible bases corresponding to the operators E and J0 -1. 

(5.1) 

Proof. The necessity of conditions (2.8), (4.4) and (5.1) was demonstrated above; we will prove that 
they are also sufficient. We claim that if condition (5.1) is satisfied, then the admissible basis E4 is a 
QT-basis. In view of (3.4), we can write this condition as (Jx43)~ - Alx43 = b. Using property (3.13) of 
admissible bases and formula (1.4), we can write condition (5.1) as 

fix43 ); = G 4 x x43 - M f - M + (G 3 ); - (G 4)~ 

Hence, by (1.3), we have M + Mf4 = (G 3 - G4 - Jx43)~ ~ 0, and E 4 is a QT-basis. 

If conditions (4.4) and (5.1) are satisfied, then B;1:2(B:/2jxs3)'3 = b and the admissible basis E5 is also 

a QT-basis. By Proposition I, the initial system has two Qls. 
When A --- 0, the criterion for the existence of two QIs is as follows. 

Theorem 3. If A ~- 0 and the system lacks dynamic symmetry, system (1.5) has two independent QIs 
in full form if and only if the following conditions hold 

I) a i = aiof(t); f(0) = I, i = 1,2,3 

2) G 3 = (AjA2A3)-If(t)Jko, (k0) ~ = 0 
3) L= 0. 

Proof. When A - 0 we have BI = E, and Condition I follows from condition (2.8). From (3.3) we 
obtain 
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x43 = J-IG3, x45 = AIA2A3(AloA2oA~of) -I JOJ-2G3 (5.2) 
Condition (5.1) yields Condition 2 of our theorem. 

Condition (5.1) may be written as (G3)~ -- b. When A --- 0 we have a = p = 0, c = (;3 and 
b = - M~ - M. It follows from (1.4) that 

M3 y + (G 3); = M2 y + (G 2)~ 

Then b = (G3) ~ - L, that is, L = 0, which completes the proof. 
In Condition 1 of Theorem 3, only two of the three equalities can be independent; this condition 

defines a circular cone in the space of the variables rli = a~hi (i --- 1, 2, 3) 

1111'12 +111113 +112113 ---- 0 (5.3) 

Consequently, Condition i imposes only one restriction on the admissible laws governing the variation 
of the principal moments of inertia Ai(t). 

For a variable system of constant composition M, = 0, and if there is no additional control moment 
M* we have L = 0. 

Propos/t/on 10. The free motion of a configurationally variable system of constant composition, lacking 
dynamic symmetry, in a uniform gravitational field has two independent QIs in full form if and only if 
Conditions 1 and 2 of Theorem 3 are satisfied. 

6. We will now show that, if two independent QIs exist, the initial system (1.5) can be reduced to an 
autonomous gyrostat system (see below, formula (6.7)). Since this autonomous system has two QIs 
(formula (6.9)), the conditions of Theorem 2 are necessary and sufficient for system (1.5) to be reducible 
to an autonomous gyrostat system. 

Proposition 11. The condition nf = 1 is equivalent to the identity 

BiJ(x × Jx) ffi f(t)Jo(X × Jo x) (6.1) 

Proof. It can be verified directly that 

Jx x x t ~lX(2)x(3)el +/~l~2x(I)x(3)e2 +/~A3x(I)x(2)e3 

and this implies that (6.1) is equivalent to conditions (2.8). 
Now suppose that the admissible bases E4 and E5, defined in Proposition 2, are QT-bases. Then 

condition (2.3) holds for s = 4 and s = 5, and system (1.5) may be written 

~ = (G, )~  - (Gs ) ;  

Put v = xsz; taking (1.3) into consideration, we obtain 

(Jv)~ + v X Jv = AIr + A2v + x53 × Jv + (G 3 - Jx53) × v (6.2) 

Substituting A2 into this equality from (3.6) and putting w5 = x53 - a, we conclude, using (3.10), 
that w5 = (LsE + J)-]c, and Eq. (6.2) becomes 

(Jv)~ + v × Jv  = A Iv + [(] + ~sE) q e] × [(J + ~,sE)v] (6.3) 

Proposition 12. I fn f  = 1, then 

(J + ~5E) -j = vB?l J-I J o, v = ---(AAIAA2Zk43 )q f(t)F, AiAAio (6.4) 

Proof. It was observed in the proof of Proposition 3 that formula (3.2) can be used for the basis E5 
with v5 = oo. Then, using (3.11), we have 

(Ai + ~'5)-t = _(~LA, AA2~,43~L4io)_I ~LAiEAV~ m 



718 V. Yu. Ol'shanskii 

and, taking condition (2.8) into account, we obtain formula (6.4). 
The  right-hand side of Eq. (6.3) may be transformed, using (6.4), to the form Air + (B~lj-1Joc) × 

(B1JYff~v). Comparing formulae (3.3) and (3.8) and taking (2.8) into consideration, we obtain the relations 

3 -I }. 
c = rl_,f( t)Jol j2B~x54, l-I~. = I'I Aioai ~li 

i=l 
(6.5) 

We introduce the variable 

u = B~Jot Jv = BfiJo t Jx51 (6.6) 

Taking (6.5) and (4.4) into consideration, we can rewrite Eq. (6.3) as 

' I I I I I 

+ W'JoS,- u) × <JoB,- u) = × + ^,r'Jog U 

Since a symmetric operator A with eigenvalues al, a2 and a3 satisfies the identityA(Abl × Ab2) - 
aaaza3bl × b2, it follows, in view of formula (3.4) and identity (6.1), that the above differential equation 
for u can be expressed in the form 

Jo(U); = (Sou + G o) × uf(t)H_~ 

Changing to the variable ~, d~ = H_vzf(t)dt, we obtain an autonomous system 

j d u  
0 -d~z I E.~ = (JoU +Go) ×u (6.7 / 

In view of (2.8), the formula defining x(t) may be rewritten as 

dx = (f-' l'[ ~ )½ dt (6.8) 
i=l l~iO/ t i  

System (6.7) is identical with Euler's system for the absolute angular velocity of a gyrostat with constant 
gyrostatic moment. This system can be integrated in quadratures and it has two QIs 

I Jo u + G O I= const, (u, Jo u) = const (6.9) 

We have proved the following theorem. 

Theorem 4. If system (1.5), describing the rotation of the carrier in the free motion of a variable system 
in a uniform gravitational field, lacks dynamic symmetry, it is reducible by a non-singular linear 
transformation u -- Ax + d, x = x(t), to the autonomous dynamical system of a gyrostat (6.7) if and 
only if the initial system (1.5) has two QIs in full form. 

7. We will show that a simple relation exists between the rotations relative to the carrier of the 
admissible QT-bases and the uniform rotations of the equivalent gyrostat, provided the system has two 
QIs. 

System (6.7) has a class of solutions of the form u = const in E3 which correspond to the uniform 
rotations of the equivalent gyrostat. In this case (J0u + G0)Hu and 

¥1(J0u+G0)+T2u = 0, ¥I,T2 = const (7.i) 

This condition defines the entire set of absolute angular velocities of uniform rotations of the gyrostat. 
If the initial system (1.51 has two Qls, then any of its solutions may be obtained using transformation 

(6.6) from some solution of the autonomous system (6.7). The set of particular solutions of system (1.5) 
that correspond to uniform rotations of the equivalent gyrostat is defined by a condition obtained from 
condition (7.11 by taking note of relation (6.6), where xsl = x + x52 

 doS J JS(x + Xs2) +  iGo + x52) = o 
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Substituting Go into this relation from condition (4.4), we obtain 

(YiJ0 + ~'2E)(x + x52) + )'tJ0x45 = 0 (7.2) 

By Proposition 3, the angular velocity x2s of the carrier relative to some admissible basis Es may be 
written as 

x2,  = x25 + x s ,  = xz5 - (J0 + v , E )  -I J0x45 

Consequently, if vs = y2~ l, the vector x = x2s satisfies condition (7.2). We have established the following 
property.  

Proposition 13. The angular velocity of the carrier of  a variable system with two QIs relative to any 
of the admissible QT-bases of  the system is a particular solution of system (1.5), which corresponds 
(via formula (6.6)) to the absolute angular velocity of  some uniform rotation of the equivalent gyrostat. 

8. Let us consider some examples of the motion of variable systems with two QIs. 

Example 1. Let K be a configurationally variable system of constant composition whose centre of mass C and 
principal axes remain fixed relative to the carrier, and whose angular momentum (about C) of motion relative to 
the carrier is zero. We also assume that there is no dynamic symmetry. 

Let us apply Theorem 3. Condition 3 is satisfied. The bases E 3 and E2 are identical G 3 = 0 and Condition 2 is 
also satisfied, with k0 = Go = 0. 

The system K can be implemented as a system consisting of three pairs of point masses on three mutually 
perpendicular axes. Each pair is symmetrically positioned with respect to the point C. The distance to the point 
of intersection C of the axes is equal to Pi, and the mass of each point of a pair is equal to mi, respectively. The 
basis E2 is associated with the given axes. 

By Theorem 3, system Kwill have two QIs if the distances pi(t) satisfy the condition obtained from (5.3) in this 
case 

4 2 4 
(8.1) 

Let us assume that mlP]O > m2p20 > rn3P20 • 
The quadratic integrals may be written as 

I Jo Jx21 I= const, I Jx2t I= const (8.2) 

Example 2. Suppose the angular momentum of motions in system K, described in Example 1, relative to the carrier 
is zero. Condition 3 of Theorem 3 holds identically, while Condition 1 implies that the principal moments of inertia 
satisfy relation (5.3). We can assume, say, that the system consists, as before, of three pairs of displaced point masses, 
while there is a flywheel at the centre of mass C, whose influence on the moments of inertia of the system will be 
ignored. Then, as in Example 1, the distances pi(t) must satisfy condition (8.1). 

Let us consider the ease when the angular momentum G2 maintains its direction in the principal basis (the 
axis of rotation of the flywheel is fixed relative to the carrier). Condition 2 of Theorem 3 will obviously hold if 
J = ~t(t)Jo. But if the inertia operator varies in some other way, this condition will hold only if the direction of the 
angular momentum G2 of the internal motions, which is fixed in E2, coincides with one of the principal directions. 
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